Derivation and Characteristics of Geometric Phases in Quantum Mechanics

Introduction to Berry Phase

Tomoaki Kameda 21 June 2024

Review of previous seminar

Derivation berry phase in general space

Berry phase

Hamiltonian is dependent on some parameter \mathbf{R} .

we solve time-dependent Schrödinger equation considering adiabatic system.

$$\begin{split} \gamma(t) &= i \int_{0}^{t} \langle \phi_{n}(\boldsymbol{R}(t')) | \frac{\partial}{\partial t'} | \phi_{n}(\boldsymbol{R}(t')) \rangle dt' = i \int_{C} \langle \phi_{n}(\boldsymbol{R}) | \frac{\partial}{\partial \boldsymbol{R}} | \phi_{n}(\boldsymbol{R}) \rangle \cdot d\boldsymbol{R} = \int_{C} A_{n}(\boldsymbol{R}) \cdot d\boldsymbol{R} \\ & \underline{\text{Berry connection}} \quad A_{n}(\boldsymbol{R}) = i \langle \phi_{n}(\boldsymbol{R}) | \frac{\partial}{\partial \boldsymbol{R}} | \phi_{n}(\boldsymbol{R}) \rangle \end{split}$$

<u>Berry curvature</u> $\boldsymbol{B}_n(\boldsymbol{R}) = \nabla_{\boldsymbol{R}} \times \boldsymbol{A}_n$

Expression transformation for numerical calculations

$$B_{n,z}(oldsymbol{R}) = -2Im\sum_{(m
eq n)} rac{\langle \phi_n(oldsymbol{R}) | \, rac{\partial \hat{H}(oldsymbol{R})}{\partial R_x} \ket{\phi_m(oldsymbol{R})} ig \langle \phi_m(oldsymbol{R}) | \, rac{\partial \hat{H}(oldsymbol{R})}{\partial R_y} \ket{\phi_n(oldsymbol{R})} \ (E_n-E_m)^2$$

This formula indicated that we can calculate berry curvature when we get Hamiltonian.

$$n_n(\boldsymbol{R})$$

Todays seminar topics Symmetry and geometric phase, Specific model calculations

- Relationship between symmetry and geometric phase •
- Consider Tight binding model about graphene, h-BN and Haldane mode

Berry phase at K point in graphene **Analytical solution**

Consider an effective Hamiltonian around the K point.

Graphene band structure

(1) Expand to first order around K(K') points with respect to k

$$H_K(\boldsymbol{k}) = \hbar
u \left(egin{array}{cc} 0 & k_x - ik_y \ k_x + ik_y & 0 \end{array}
ight) = \hbar (-\sigma_x k_x + \sigma_y k_y).$$

$$u=rac{\sqrt{3}}{2}rac{a\gamma_0}{\hbar},\ \sigma_i(i=x,y,z)$$

 $(k_x, k_y) = k(\cos\phi, \sin\phi)$

$$|\phi_{+}(\boldsymbol{k})
angle = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \\ \mathrm{e}^{i\phi(\boldsymbol{k})} \end{array}
ight), \quad |\phi_{-}(\boldsymbol{k})
angle = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \\ -\mathrm{e}^{i\phi(\boldsymbol{k})} \end{array}
ight)$$

$$egin{aligned} \mathcal{A}_{\pm}(m{k}) &= i \left< \phi_{\pm}(m{k}) |
abla_{m{k}} | \phi_{\pm}(m{k})
ight> \ &= rac{1}{2}
abla_{m{k}} \phi(m{k}), \end{aligned}$$

$$\gamma[C] = \oint \mathcal{A}(\boldsymbol{k}) \cdot d\boldsymbol{k} = \begin{cases} -\pi \\ 0 \end{cases}$$

$$\ln \phi$$

Berry phase in graphene Numerical calculation

Berry phase in h-BN model **Breaking Inversion symmetry**

kх

Breaking Time reversal symmetry

BC is even-function in Haldane model

berry curvature 25 50 75 ≥ 100 125 150 175 · K2 M1 K1 100 125 150 175 wave number 25 50 75 kx berry curvature 25 50 75 ≩ 100

75 100 125 150 175

kx

125

150

175

25

0

50

Berry curvature

-5

K2

M1

wave number

K1

-5

Progress report

Tomoaki Kameda

Three band tight binding model

Consider 3 band in d orbital of transition atom with spin $\left\{ \left| d_{z^{2},\uparrow} \right\rangle, \left| d_{xy,\uparrow} \right\rangle, \left| d_{x^{2}-y^{2},\uparrow} \right\rangle, \left| d_{z^{2},\downarrow} \right\rangle, \left| d_{xy,\downarrow} \right\rangle, \left| d_{x^{2}-y^{2},\downarrow} \right\rangle \right\}$

1.Liu, G., Shan, W., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). 2.Habara, R. & Wakabayashi, K. Optically induced spin current in monolayer NbSe2. Phys. Rev. B 103, L161410 (2021). 3.Zhou, B. T., Taguchi, K., Kawaguchi, Y., Tanaka, Y. & Law, K. T. Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Commun. Phys. 2, 26 (2019).

$$1 \qquad (2 \qquad (3) \qquad (4)$$
$$\boldsymbol{k}) = H_{\text{TNN}}(\boldsymbol{k}) \otimes \sigma_0 + \frac{1}{2}\lambda L_z \otimes \sigma_z + H_{\text{R}}(\boldsymbol{k}) + H_{\text{I}}^{\text{c}}(\boldsymbol{k})$$

$$(m{k}) = egin{pmatrix} 2lpha_0 & 0 & 0 \ 0 & 2lpha_2 & 0 \ 0 & 0 & 2lpha_2 \end{pmatrix} \otimes (f_x(m{k})\sigma_y - f_y(m{k})\sigma_x).$$

Compare WSe2 and WSeTe band structure

Yao, Qun-Fang & Cai, Jia & Tong, Wen-Yi & Gong, Shi-Jing & Wang, Ji-Qing & Wan, Xian-gang & Duan, Chun-Gang & Chu, J.. (2016).

Parameters were taken from the following paper

1.Liu, G., Shan, W., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). 2.Zhou, B. T., Taguchi, K., Kawaguchi, Y., Tanaka, Y. & Law, K. T. Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Commun. Phys. 2, 26 (2019).

Þ

Μ

Compare WSe2 and WSeTe

Compare WSe2 and WSeTe

<u>WSeTe</u>

<u>Next</u>

- Rashba parameter
- Wannier 90 -> BC計算
- Other Janus TMDC
- Spin hall conductivity

$$\Omega_{n,xy}^{s_z}(\boldsymbol{k}) = \hbar \sum_{m \neq n} \frac{-2\mathrm{Im}\left[\langle n\boldsymbol{k} | \hat{j}_x^z | \boldsymbol{m} \boldsymbol{k} \rangle \langle \boldsymbol{m} \boldsymbol{k} | \hat{v}_y | \boldsymbol{n} \boldsymbol{k} \rangle\right]}{(E_{nk} - E_{mk})^2}$$

- Plot charge berry curvature and spin berry curvature
- Compared WSe2 and WSeTe about electrical properties

Three band tight binding model with Ising type SOC and Rashba type SOC

