Derivation and Characteristics of Geometric Phases in Quantum Mechanics

Introduction to Berry Phase

Tomoaki Kameda 16 May 2024

Review of previous seminar (1) phase of wave function(WF), gauge transformation, vector potential...

- Phase of WF is observable in case of superposition!!
- Local gauge transformation

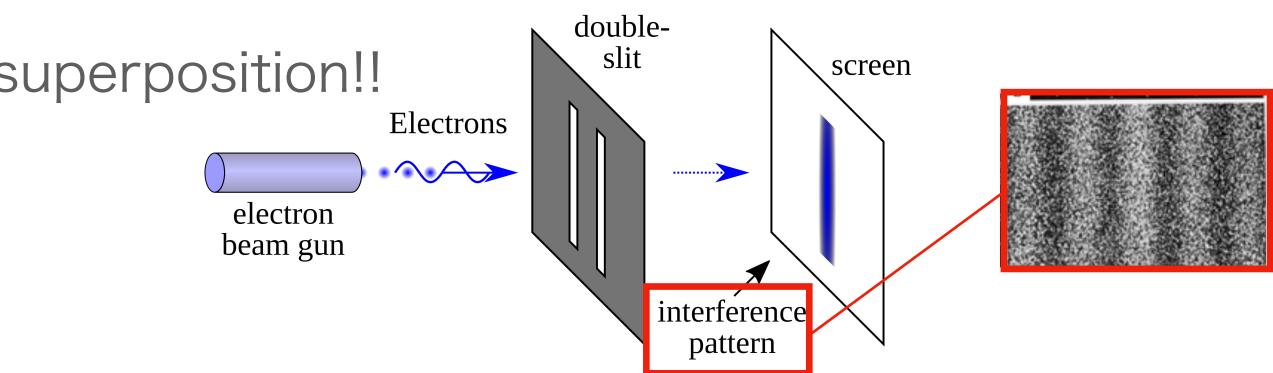
$$\psi(\vec{r})
ightarrow \psi'(\vec{r}) = \psi(\vec{r}) e^{i \theta(\vec{r})}$$

 ψ, ψ' are same mean in physics **Problem**

Momentum is not a gauge invariant…

Solution→introduce vector potential

- $\nabla \times \mathbf{A} = \mathbf{B} \quad \begin{cases} \mathbf{A} & : \text{ in electro-magnetism it is called vector potential} \\ \mathbf{B} & : \text{ in electro-magnetism it is called magnetic field} \end{cases}$



$$\dot{y} = egin{array}{c} |\psi'
angle = egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle + \hbar ig \psi | \, rac{\partial heta}{\partial r_i} \, |\psi
angle \ rac{\partial heta}{\partial r_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle + \hbar ig \langle \psi | \, rac{\partial heta}{\partial r_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \hat{p_i} \, |\psi
angle \ egin{array}{c} \psi | \, \psi
angle \ egin{array}{c} \psi | \, \psi \ egin{array}$$

Review of previous seminar (2) Connection, Curvature, and their gauge properties

Gauge invariance

$$\begin{cases} \boldsymbol{A}' = \boldsymbol{A} - \frac{\hbar}{e} \nabla \theta & \longrightarrow & \text{Not obse} \\ \boldsymbol{B}' = \boldsymbol{B} & \longrightarrow & \text{observab} \end{cases}$$

Consider the line integral of a closed curve

$$\oint_{C} \mathbf{A} \cdot d\mathbf{r} \implies \text{observable!}$$

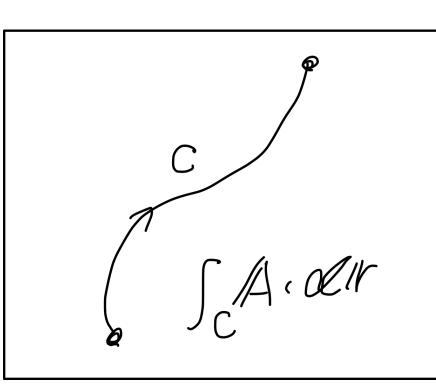
$$\oint_{C} \mathbf{A} \cdot d\mathbf{r} = \int_{S} \nabla \times \mathbf{A} \cdot d\mathbf{S} = \int_{S} \mathbf{B}$$

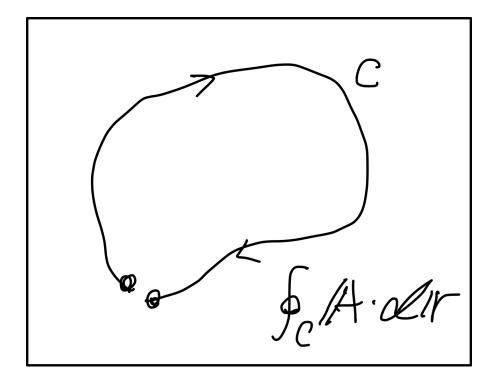
What were these checked for?

 \rightarrow Because a similar structure appears when considering the Berry phase ! !

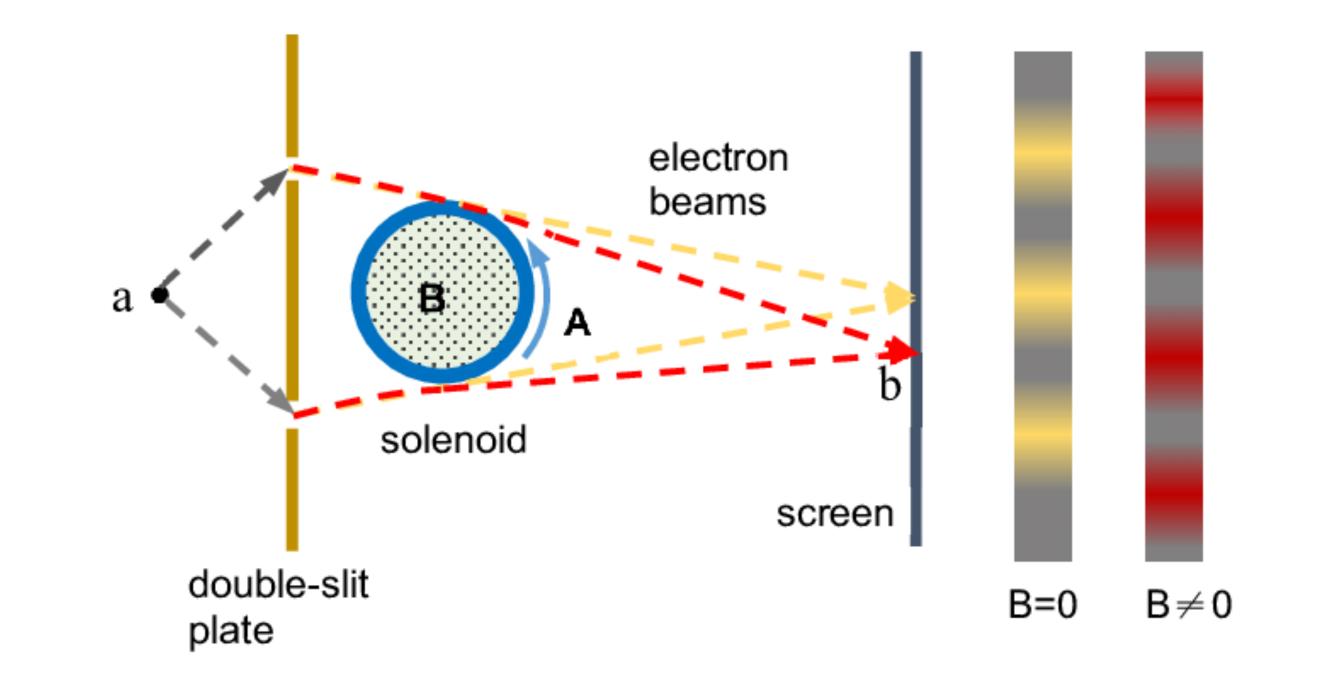
- rvable le!

 $\cdot dS$





Aharonov-Bohm effect Vector potential appears in physics phenomena



Even when the magnetic field is zero,

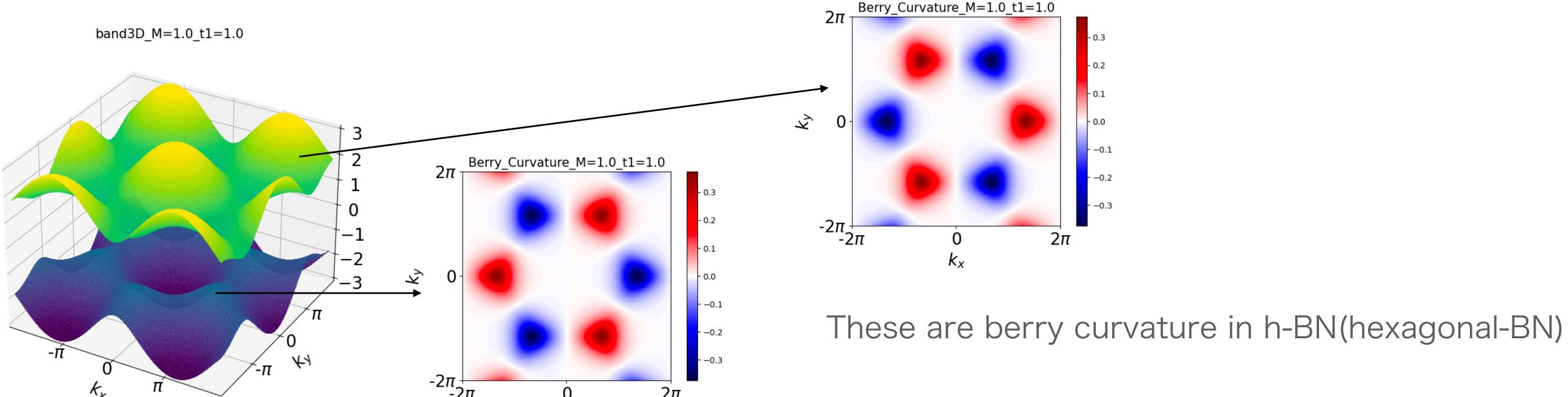
the phase difference changes due to the vector potential.

An interpretation for Aharonov-Bohm effect with classical electromagnetic theory

Todays seminar topics Derivation berry phase in general space

- Derivation berry phase in general space
- Properties of berry phase, curvature and connection
- Expression transformation for numerical calculations

band3D_M=1.0_t1=1.0



Derivation of the Berry phase Parameter-dependent Hamiltonian (1)

Definition

The "Berry phase" is the phase acquired by a quantum system moving along a circuit C on a given adiabatic surface.

System

Hamiltonian is dependent on some parameter \mathbf{R} . **R** changes in a time-dependent manner.

$$\hat{H}=\hat{H}(oldsymbol{R}) \hspace{0.1in} oldsymbol{R}=(R_1,R_2,\dots)$$

$$\hat{H}(oldsymbol{R})\ket{\phi_n(oldsymbol{R})}=E_n(oldsymbol{R})\ket{\phi_n(oldsymbol{R})}$$

Problem

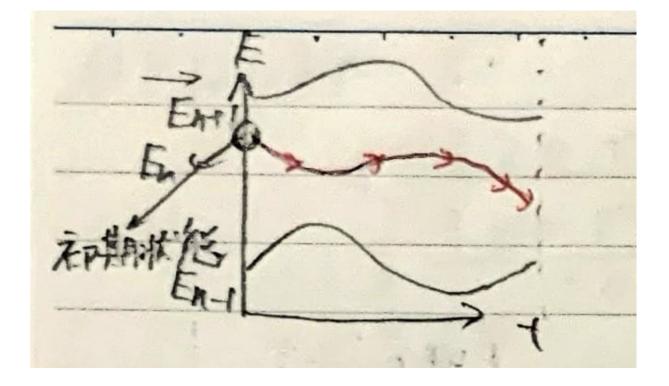
How can we solve time-dependent Schrödinger equation?

 $|\psi_{(t=0)}
angle = |\phi_n(oldsymbol{R}_{(t=0)})
angle$ Initial state eigen state(t=0) $i\hbarrac{\partial}{\partial t}\ket{\psi(t)}=\hat{H}(oldsymbol{R}(t))\ket{\psi(t)}$

"Solid State Physics," Grosso, G., Parravicini, G.P.

Assumptions for solving

- there is non-degeneracy in the eigen energy
- *the system is adiabatic*



縮退しておらず、時間経過してもn番目の固有状態に居続ける 断熱近似→一種の近似 摂動論より荒い

Derivation of the Berry phase Parameter-dependent Hamiltonian(2)

Wave functions get some phase over time.

$$|\psi(t)
angle = e^{i\theta(t)} |\phi_n(\boldsymbol{R}(t))
angle$$
 (1)

We want to calculate!

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H}(\boldsymbol{R}(t)) |\psi(t)\rangle$$
 (2)

$$\theta(t) = \left[-\frac{1}{\hbar} \int_{0}^{t} E_{n}(\boldsymbol{R}(t'))dt' + \left[i \int_{0}^{t} \langle \phi_{n}(\boldsymbol{R}(t')) | \frac{\partial}{\partial t'} | \phi_{n}(\boldsymbol{R}(t')) \rangle \right] \right]$$

Dinamic phase Berry phase!!
Berry phase

$$\gamma(t) = i \int_0^t \langle \phi_n(\boldsymbol{R}(t')) | \frac{\partial}{\partial t'} | \phi_n(\boldsymbol{R}(t')) \rangle dt' = i \int_C \langle \phi_n(\boldsymbol{R}) | \frac{\partial}{\partial \boldsymbol{R}} | \phi_n(\boldsymbol{R}) \rangle \cdot d\boldsymbol{R} = \int_C A_n(\boldsymbol{R}) \cdot d\boldsymbol{R} \quad (4)$$

 $A_n(\mathbf{R}) = i \langle \phi_n(\mathbf{R}) | \frac{\partial}{\partial \mathbf{R}} | \phi_n(\mathbf{R}) \rangle$ Berry connection(in this case, vector field in R space)

Derivation of the Berry phase Berry connection properties and berry curvature

Gauge transformation

$$\hat{H}(\mathbf{R}) |\phi_n(\mathbf{R})\rangle = E_n(\mathbf{R}) |\phi_n(\mathbf{R})\rangle \quad (1)$$

$$|\phi'_n(\mathbf{R})\rangle = e^{i\theta_n(\mathbf{R})} |\phi_n(\mathbf{R})\rangle \quad (2)$$

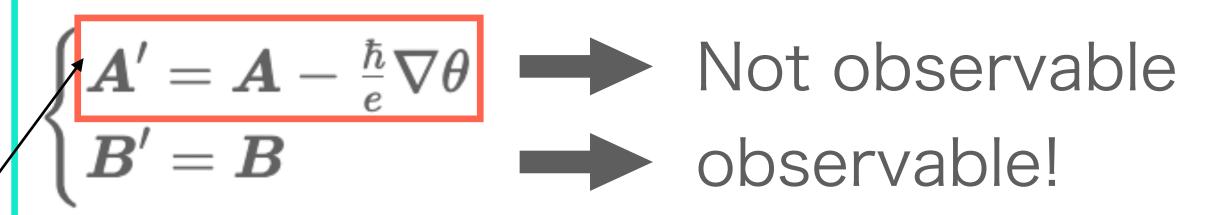
$$Look likelt$$

$$A_n(\mathbf{R}) = i \langle \phi_n(\mathbf{R}) | \frac{\partial}{\partial \mathbf{R}} |\phi_n(\mathbf{R})\rangle \quad (3)$$

$$\bullet \qquad A'_n(\mathbf{R}) = i \langle \phi'_n(\mathbf{R}) | \frac{\partial}{\partial \mathbf{R}} |\phi'_n(\mathbf{R})\rangle = \mathbf{A}^n - \frac{\partial \theta^n}{\partial \mathbf{R}}$$

$$\bullet \qquad \mathbf{A}'_n = \mathbf{A}_n - \nabla_{\mathbf{R}} \theta_n \qquad (4)$$

In last seminar→vector potential gauge transformation



Berry curvature

 $\boldsymbol{B}_n(\boldsymbol{R}) = \nabla_{\boldsymbol{R}} \times \boldsymbol{A}_n(\boldsymbol{R})$ $\boldsymbol{P} = \boldsymbol{B}_n$ Gauge invariant!

<u>Gauge invariance of berry phase</u>

You can check it !!

Other form of Berry curvature Expression transformation for numerical calculations

<u>Motivation</u> $\boldsymbol{B}_n(\boldsymbol{R}) = \nabla_{\boldsymbol{R}} \times \boldsymbol{A}_n(\boldsymbol{R})$

(1) Physical meaning is difficult to understand. \rightarrow gauge invariance, divergence during degeneracy.

(2) Expression unsuitable for numerical calculations. \rightarrow Indeterminacy of the phase of the wave function.

<u>Result</u>

$$B_{n,z}(oldsymbol{R}) = -2Im\sum_{(m
eq n)} rac{\langle \phi_n(oldsymbol{R}) | \, rac{\partial \hat{H}(oldsymbol{R})}{\partial R_x} \, | \phi}{}$$

 $\phi_m(\mathbf{R}) \langle \phi_m(\mathbf{R}) | \frac{\partial \hat{H}(\mathbf{R})}{\partial R_y} | \phi_n(\mathbf{R}) \rangle$ - check it!

 $(E_n-E_m)^2$

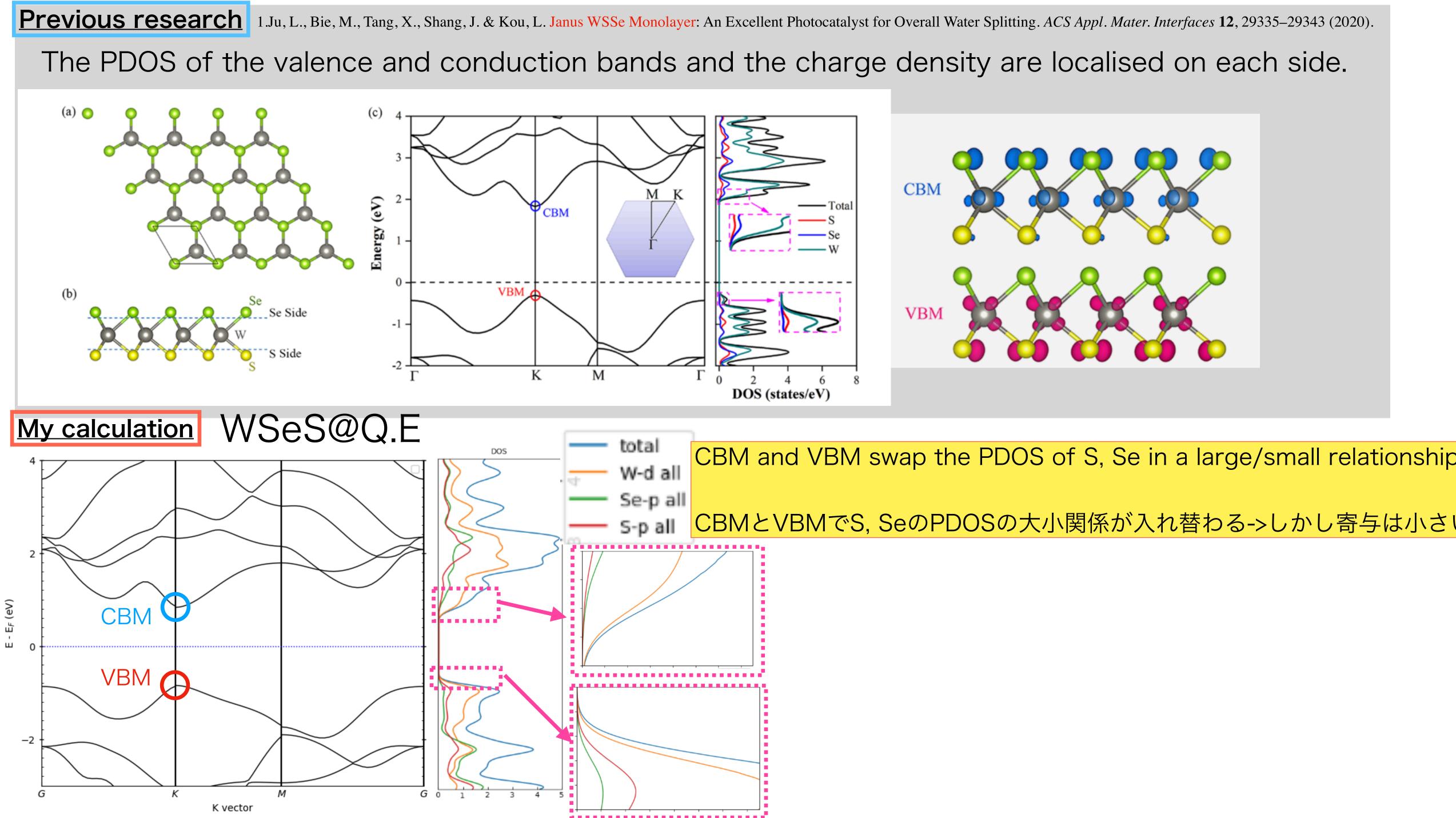
References

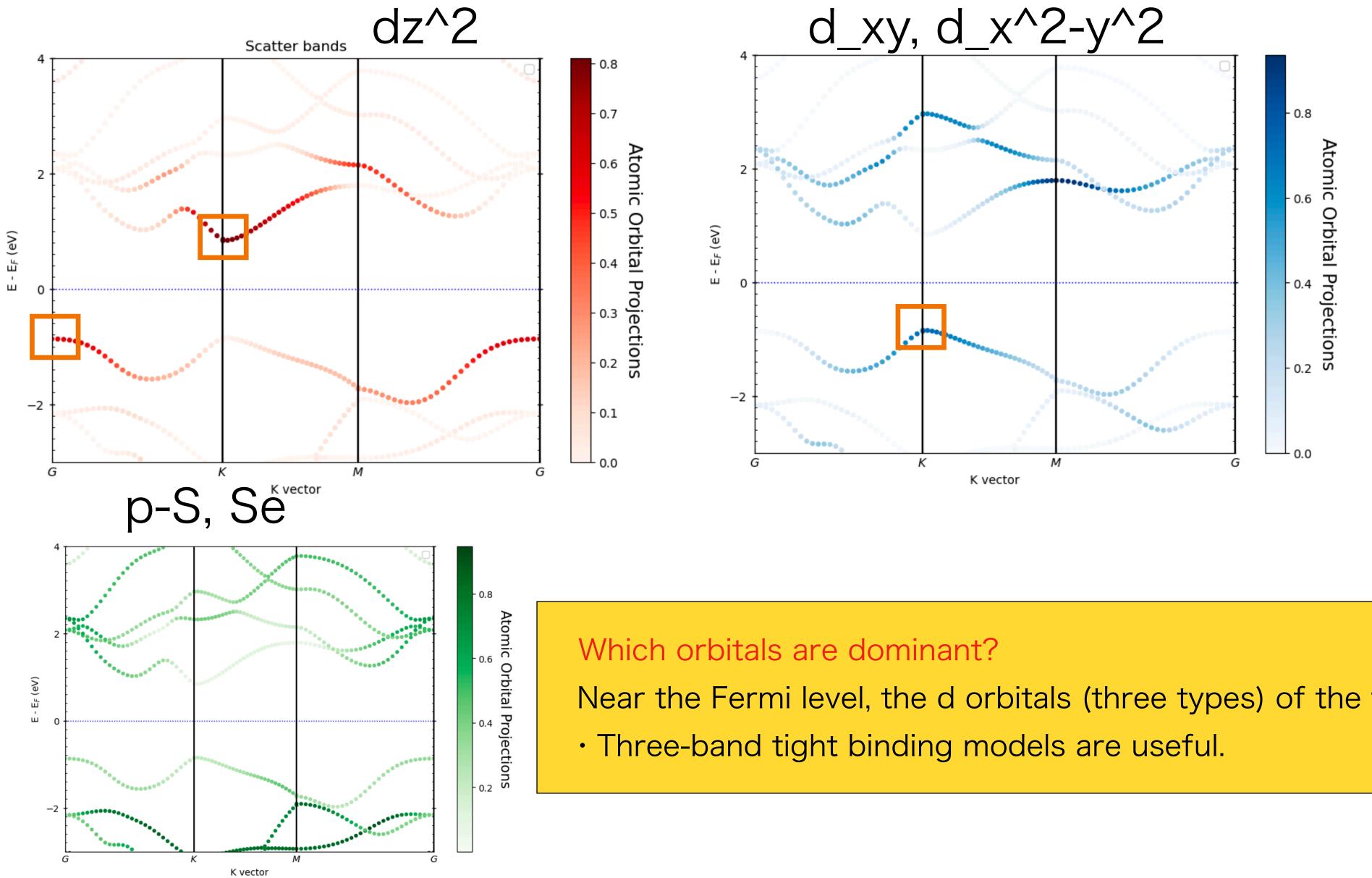
・スピン流とトポロジカル絶縁体

- Wu, T. T. & Yang, C. N. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975).
- Dirac, P. A. M. Quantised singularities in the electromagnetic field,. Proc. R. Soc. Lond. Ser. A, Contain. Pap. a Math. Phys. Character 133, 60–72 (1931).
- "Solid State Physics," Grosso, G., Parravicini, G.P.

Progress report

Tomoaki Kameda





Near the Fermi level, the d orbitals (three types) of the transition metal are dominate.

Previous research

PHYSICAL REVIEW B 104, 075435 (2021)

Spin Hall effect in the monolayer Janus compound MoSSe enhanced by Rashba spin-orbit coupling

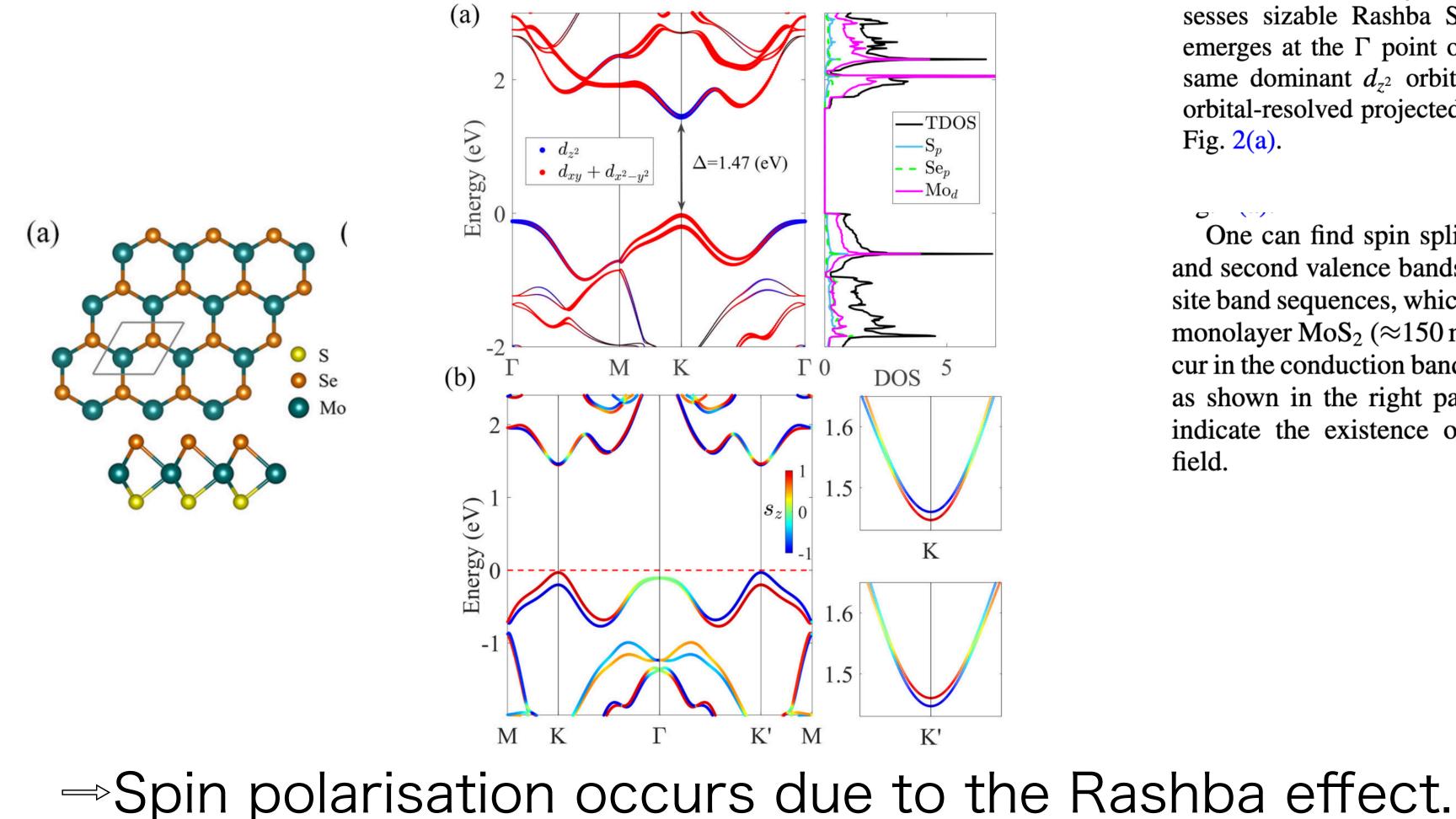
Sheng-Bin Yu[®],^{1,2} Ma Zhou,³ Dong Zhang[®],^{1,2,*} and Kai Chang^{1,2,†}

¹SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China

²CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

³Division of Quantum Materials and Devices, Beijing Academy of Quantum Information Sciences, Beijing 100193, China

(Received 14 June 2021; accepted 9 August 2021; published 19 August 2021)



Band structures

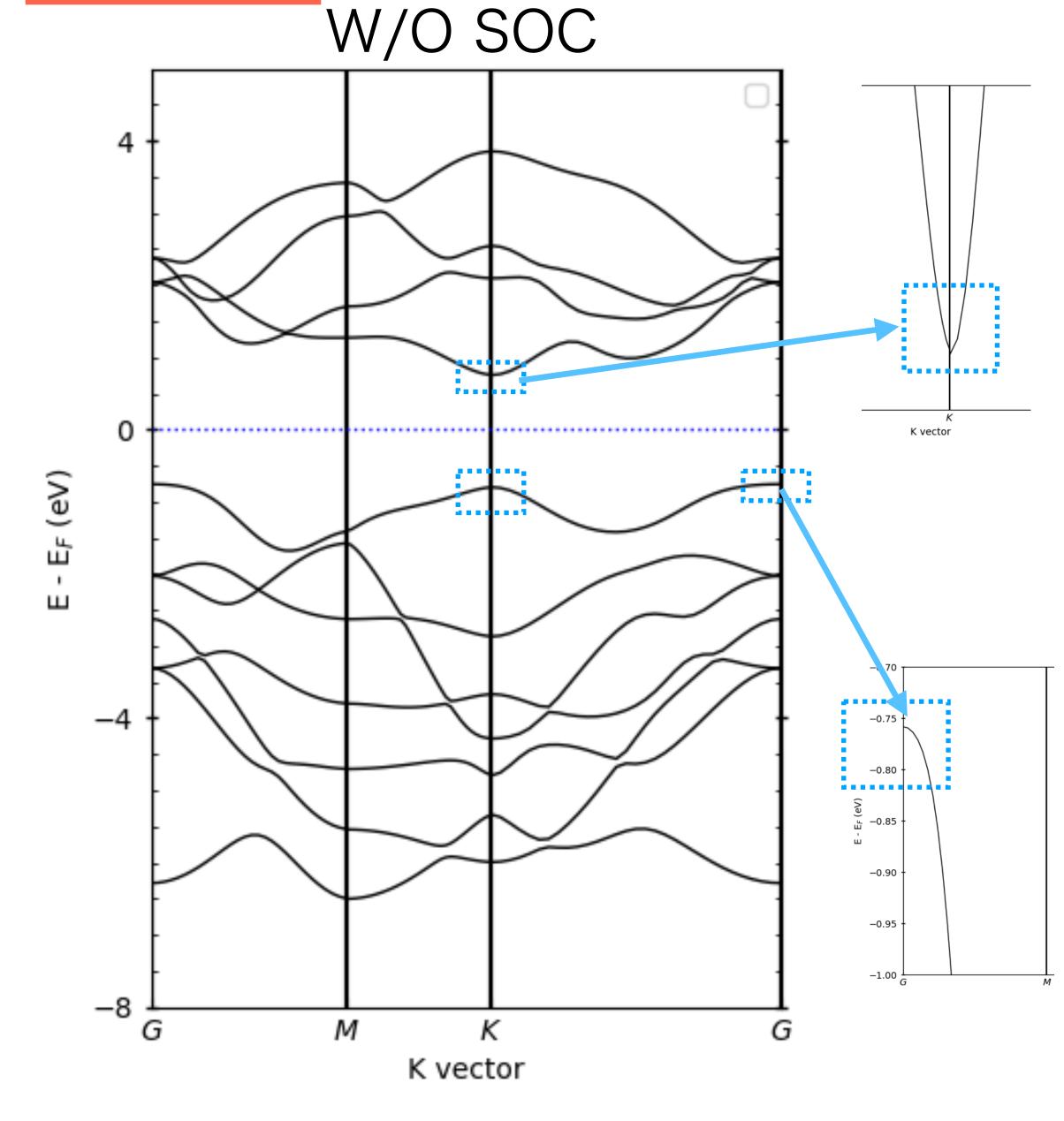
 semiconductor with a direct band gap of about 1.47 eV (MoSe2 (1.33 eV) and MoS2 (1.61 eV))

The strong hybridization between the $d_{x^2-v^2}$ and d_{xy} orbitals of Mo atoms also cause the large Zeeman-like SOC splitting of the VBM at the K and K' points. The CBM is mainly comprised by the d_{z^2} orbital of the Mo atoms, which possesses sizable Rashba SOC. The large Rashba SOC also emerges at the Γ point of the valence bands because of the same dominant d_{z^2} orbital components, as shown in the d orbital-resolved projected band structures in the left panel of Fig. 2(a).

One can find spin splitting ($\approx 169 \text{ meV}$) between the first and second valence bands at the K and K' valleys with opposite band sequences, which is larger than the reported values in monolayer MoS₂ (\approx 150 meV). Similar spin splittings also occur in the conduction bands, but with small values ($\approx 13 \text{ meV}$), as shown in the right panel of Fig. 2(b). These differences indicate the existence of a large build-in vertical electric field.

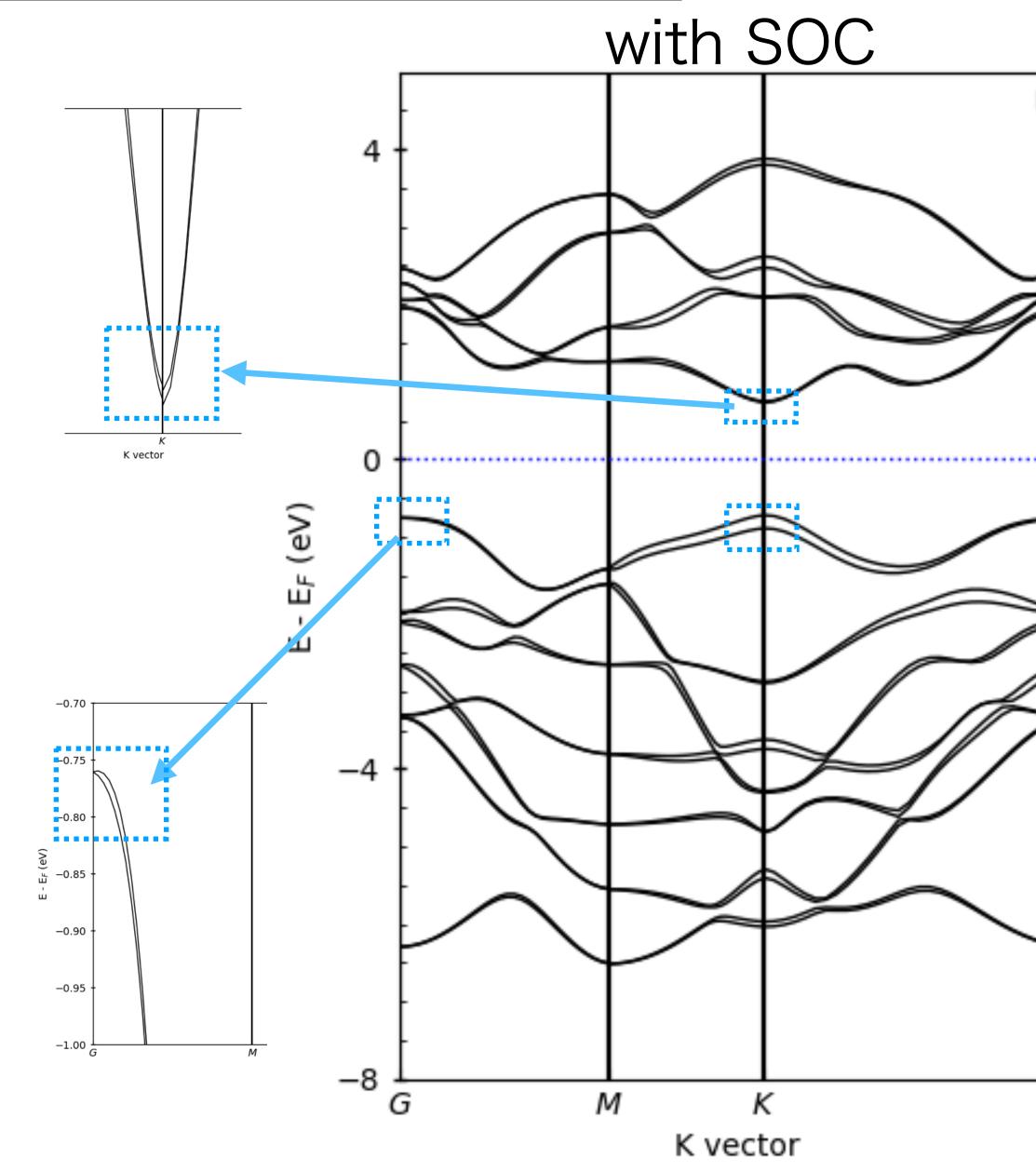
MoSSe@Q.E

My calculation



Chalcogenic contribution to Band structure appears in the SOC.

Three-band tight binding models + SOC(Ising term & Rashba term)



<u>Task</u>

•

- Three-band tight binding models + SOC(Ising term & Rashba term).
- Wannier transform of Janus TMD band structure.
- calculation of janus TMD nanotube.
- optical conductivity(linear, nonlinear)