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Review of previous seminar O

phase of wave function(WF), gauge transformation, vector potential-:--

double-

Phase of WF Is observable in case of superposition!!
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Solution—introduce vector potential

A in electro-magnetism it is called vector potential
VxA=B

B :in electro-magnetism it is called magnetic field



Review of previous seminar @

Connection, Curvature, and their gauge properties

Gauge invariance

A=A - vy == Not observable
B' =B =P oObservable!

Consider the line integral of a closed curve

%A.dr == Observable!
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What were these checked for?

— Because a similar structure appears when considering the Berry phase ! !




Aharonov-Bohm effect

Vector potential appears in physics phenomena
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Even when the magnetic field is zero,

the phase difference changes due to the vector potential.

An interpretation for Aharonov-Bohm effect with classical electromagnetic theory



Todays seminar topics

Derivation berry phase In general space

. Derivation berry phase in general space
. Properties of berry phase, curvature and connection

. Expression transtformation for numerical calculations

After this seminar, you can calculate berry pahse, curvature, connection
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These are berry curvature in h-BN(hexagonal-BN)




Derivation of the Berry phase

Parameter-dependent Hamiltonian®

Definition
The “Berry phase” is the phase acquired by a quantum system moving along a circuit C on a given adiabatic surface.

“Solid State Physics,” Grosso, G.,Parravicini, G.P.

System Assumptions for solving

Hamiltonian is dependent on some parameter R. * there is non-degeneracy in the eigen energy

R changes in a time-dependent manner. , , ,
* the system is adiabatic

H=H(R) R=(R,R,,...)

H(R)|¢n(R)) = E.(R) |$n(R))
Problem

How can we solve time-dependent Schrodinger equation?

Y=0)) = |Pn(R1=0))) Initial state eigen state(t=0)
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Derivation of the Berry phase
Parameter-dependent Hamiltonian®@

Wave functions get some phase over time.

[¥(t)) = 6“’{‘) on(R())) (1)

We want to calculate!

ih% B(t)) = H(R(®)) [¥(t) (2)

00) = 5 [ Ew(RENAE[i [ (6RO 5 len(RENE | (3)
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Dinamic phase

Berry phase

1) =i [ @u(REO)] g (6 (REN)E =i [ (@n(R)] 5 6n(R) - dR = [ 4,(R)-dR (4)

Berry phase!!

A (R) =i (¢n(R)| 8% ¢.(R))  Berry connection(in this case, vector field in R space)



Derivation of the Berry phase
Berry connection properties and berry curvature

Gauge transformation

In last seminar—vector potential gauge transformation

H(R) |p.(R)) = E,(R) |$o(R)) (1)

Berry curvature

B,(R) =Vg x A,(R) » B, = B, Gauge invariant!

Gauge invariance of berry phase

You can check it !



Other form of Berry curvature

Expression transformation for numerical calculations

Motivation B,(R)=Vg x A,(R)

(D Physical meaning is difficult to understand. — gauge invariance, divergence during degeneracy.

@ Expression unsuitable for numerical calculations.— Indeterminacy of the phase of the wave function.

Result

A check It!
(R)| 8?&? | (R)) (m(R)| 2oL \cbn /
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E - EF (eV)

PreViOUS Fresea rCh 1.Ju, L., Bie, M., Tang, X., Shang, J. & Kou, L. Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 12,29335-29343 (2020).

The PDOS of the valence and conduction bands and the charge density are localised on each side.
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WSeS@Q.E
My calculation

Scatter bands
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Previous research
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—Spin polarisation occurs due to the Rashba effect.

Band structures

- semiconductor with a direct band gap of about 1.47 eV
(MoSe?2 (1.33 eV) and MoS2 (1.61 eV))

The strong hybridization between the d,>_,> and d,, orbitals
of Mo atoms also cause the large Zeeman-like SOC splitting
of the VBM at the K and K’ points. The CBM is mainly
comprised by the d. orbital of the Mo atoms, which pos-
sesses sizable Rashba SOC. The large Rashba SOC also
emerges at the I' point of the valence bands because of the
same dominant d,. orbital components, as shown in the d

orbital-resolved projected band structures in the left panel of
Fig. 2(a).

One can find spin splitting (169 meV) between the first
and second valence bands at the K and K’ valleys with oppo-
site band sequences, which is larger than the reported values in
monolayer MoS, (150 meV). Similar spin splittings also oc-
cur 1n the conduction bands, but with small values (13 meV),
as shown in the right panel of Fig. 2(b). These differences

indicate the existence of a large build-in vertical electric
field.



Chalcogenic contribution to Band structure appears in the SOC.
MoSSe@Q.E

Mv calculation ' - Three-band tight binding models + SOC(Ising term & Rashba term)
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Task

+ Three-band tight binding models + SOC(Ising term & Rashba term).

- Wannier transform of Janus TMD band structure.
+ calculation of janus TMD nanotube.

- optical conductivity(linear, nonlinear)



